

24 Motoréducteurs brushless synchrones avec arbre creux EZHP

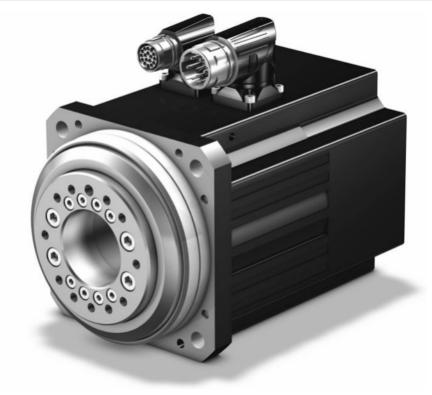
Sommaire

24.1	Aperçu		795
24.2	Tableau	x de sélection	796
	24.2.1	Caractéristiques techniques moteur brushless synchrone	797
	24.2.2	Tableaux de sélection motoréducteur brushless synchrone	798
24.3	Caracté	ristiques couple-vitesse de rotation	799
24.4	Croquis	cotés	801
	24.4.1	Motoréducteurs EZHP	802
24.5	Désigna	ation de type	803
24.6	Descrip	tion du produit	803
	24.6.1	Caractéristiques générales	803
	24.6.2	Caractéristiques électriques	804
	24.6.3	Conditions de montage	804
	24.6.4	Lubrifiants	804
	24.6.5	Sens de rotation	804
	24.6.6	Conditions ambiantes	804
	24.6.7	Encodeur	805
	24.6.8	Sonde thermique	806
	24.6.9	Mode de refroidissement	808
	24.6.10	Frein de maintien	808
	24.6.11	Technique de branchement	810
24.7	Configu	ration	814
	24.7.1	Calcul du point de fonctionnement	814
	24.7.2	Charges admissibles exercées sur l'arbre	818
24.8	Autres i	nformations	820
	24.8.1	Directives et normes	820
	24.8.2	Marquages	820
	24.8.3	Autres documents	820

EZHP

24 Motoréducteurs brushless synchrones avec arbre creux EZHP Sommaire

24.1 Aperçu


Motoréducteurs brushless synchrones avec arbre creux

Données techniques

i	3 – 27
M _{2acc}	47 – 500 Nm

Caractéristiques

Bride arbre creux traversante pour le passage des fluides	✓
Réducteur planétaire compact monté avec i = 3, 9 ou 27	✓
Sans entretien	✓
Montage universel	✓
Exploitation continue sans refroidissement (bague FKM à la sortie)	✓
Frein de maintien sans jeu (option)	✓
Refroidissement par convection	✓
Encodeur absolu EnDat inductif	✓
Courses de référence inutiles avec encodeurs absolus Multiturn (option)	✓
Plaque signalétique électronique pour mise en service rapide et fiable	✓
Connecteurs tournants avec fermeture rapide	✓

EZHP

ID 442437_fr.03 - 03/2017 795

24.2 Tableaux de sélection

Les caractéristiques techniques indiquées dans les tableaux de sélection sont applicables pour :

- Altitude 1 000 m max.
- Températures ambiantes de 0 à 40 °C
- Exploitation avec un servo-variateur
- Tension du circuit intermédiaire U_{ZK} = DC 540 V
- Laque noire mate RAL 9005

Signes convenus	Unité	Explication
a _{th}	_	Paramètre pour calculer K _{mot,th}
C ₂	Nm/ arcmin	Rigidité à la torsion du réducteur (rigidité finale) par rapport à la sortie du réducteur
$\Delta \phi_2$	arcmin	Jeu de l'arbre de sortie avec entrée bloquée
i	_	Rapport de réduction
i _{exakt}	_	Rapport de réduction mathématiquement exact
Io	A	Courant à l'arrêt : valeur effective du courant de phase en cas de réalisation du couple d'immobilisation $\rm M_{\rm 0}$ (tolérance ±5 %)
I _{max}	A	Courant maximal : valeur effective du courant de phase maximal en cas de réalisation du couple maximal M_{max} (tolérance ±5 %).
		Un dépassement de $I_{\mbox{\scriptsize max}}$ est susceptible d'endommager irrémédiablement (démagnétisation) le rotor.
I _N	A	Courant nominal : valeur effective du courant de phase en cas de réalisation du couple nominal M_{N} au point nominal (tolérance ± 5 %)
J_1	10 ⁻⁴ kgm ²	Couple d'inertie par rapport à l'entrée du réducteur
K _{EM}	V/min ⁻¹	Constante de tension : valeur de crête de la tension moteur induite à 1 000 min ⁻¹ et une température d'enroulement $\Delta\vartheta$ = 100 K (tolérance ±10 %)
K _{M0}	Nm/A	Constante de couple : rapport entre le couple d'immobilisation et couple de frottement et le courant à l'arrêt ; K_{M0} = $(M_0 + M_R) / I_0$ (tolérance ±10 %)
$K_{M,N}$	Nm/A	Constante de couple : rapport entre le couple nominal M_N et le courant nominal I_N ; $K_{M,N}=M_N$ / I_N (tolérance ±10 %)
L_{U-V}	mH	Inductance d'un moteur entre deux phases (calculée dans le circuit oscillant)
m	kg	Poids
M _o	Nm	Couple d'immobilisation : couple que le moteur peut donner durablement à 10 min $^{\text{-}1}$ (tolérance $\pm 5~\%)$
M _{2,0}	Nm	Couple d'immobilisation à la sortie du réducteur
M _{2acc}	Nm	Couple d'accélération maximal admissible à la sortie du réducteur
M _{2acc,max}	Nm	Couple d'accélération maximal admissible d'un groupe de motoréducteurs dont la taille et la vitesse de rotation nominale n_{1N} sont identiques
M_{max}	Nm	Couple maximal : couple maximal que le moteur peut donner brièvement (à l'accélération ou au freinage) (tolérance ±10 %)
M _{2N}	Nm	Couple nominal à la sortie du réducteur (par rapport à n _{1N})
M _{2NOT}	Nm	Couple d'arrêt d'urgence contrôlé du réducteur à la sortie du réducteur pour max. 1 000 charges alternées

Signes convenus	Unité	Explication
M_N	Nm	Couple nominal : couple maximal d'un moteur en mode S1 à vitesse de rotation nominale $n_{\rm N}$ (tolérance ± 5 %)
		Vous pouvez calculer approximativement d'autres couples de la manière suivante : M_{N^*} = $K_{M0} \cdot I^* - M_R$.
M_R	Nm	Couple de frottement (des roulements et joints) d'un moteur à température d'enroulement $\Delta\vartheta$ = 100 K
n_N	min ⁻¹	Vitesse de rotation nominale : vitesse de rotation indiquée pour le couple nominal $\rm M_{\scriptscriptstyle N}$
n _{1N}	min ⁻¹	Vitesse de rotation nominale à l'entrée du réducteur
n _{2N}	min ⁻¹	Vitesse de rotation nominale à la sortie du réducteur
n _{1maxDB}	min ⁻¹	Vitesse d'entrée maximale admissible du réducteur en exploitation continue
n _{1maxZB}	min ⁻¹	Vitesse d'entrée maximale admissible du réducteur en fonctionne- ment alterné
P_N	kW	Puissance nominale : puissance que le moteur peut donner en mode S1 au point nominal (tolérance ±5 %)
R _{U-V}	Ω	Résistance de la bobine d'un moteur entre deux phases à une température d'enroulement de 20 $^{\circ}\mathrm{C}$
S	_	Caractéristique de la charge : quotient des couples nominaux du réducteur et du moteur sans tenir compte de la puissance limite thermique. Représente une dimension pour la réserve du motoréducteur.
T _{el}	ms	Constante de temps électrique : rapport entre l'inductance et la résistance de la bobine d'un moteur : $T_{\rm el}$ = $L_{\rm U-V}$ / $R_{\rm U-V}$
U _{zk}	V	Tension du circuit intermédiaire : caractéristique d'un servo-variateur

24.2.1 Caractéristiques techniques moteur brushless synchrone

Le tableau suivant vous donne des informations sur les données techniques des composants moteur des motoréducteurs brushless synchrones EZHP. Ces données techniques sont notamment indispensables au calcul du point de fonctionnement (voir chapitre [> 24.7.1])

Туре	K _{EM} [V/1000 min ⁻¹]	n _N [min ⁻¹]	M _N [Nm]	I _N [A]	K _{M,N} [Nm/A]	P _N [kW]	M₀ [Nm]	I₀ [A]	K _{M0} [Nm/A]	M _R [Nm]	M _{max} [Nm]	I _{max} [A]	R _{υ-ν} [Ω]	L _{u-v} [mH]	T _{el} [ms]
EZHP_511U	97	3000	3,00	3,32	0,90	0,94	4,10	4,06	1,12	0,44	16,0	22,0	3,80	23,50	6,18
EZHP_512U	121	3000	7,00	5,59	1,25	2,2	7,80	6,13	1,34	0,44	31,0	33,0	2,32	16,80	7,24
EZHP_513U	119	3000	8,30	7,04	1,18	2,6	10,9	8,76	1,29	0,44	43,0	41,0	1,25	10,00	8,00
EZHP_515U	141	3000	14,0	9,46	1,48	4,4	16,4	11,0	1,54	0,44	67,0	52,0	0,93	8,33	8,96
EZHP_711U	95	3000	7,30	7,53	0,97	2,3	7,90	7,98	1,07	0,63	20,0	25,0	1,30	12,83	9,87
EZHP_712U	133	3000	11,6	8,18	1,42	3,6	14,4	9,99	1,50	0,63	41,0	36,0	1,00	11,73	11,73
EZHP_713U	122	3000	17,8	13,4	1,33	5,6	20,4	15,1	1,39	0,63	65,0	62,0	0,52	6,80	13,08
EZHP_715U	140	3000	24,6	17,2	1,43	7,7	31,1	21,1	1,50	0,63	104	87,0	0,33	4,80	14,55

F7HP

ID 442437_fr.03 - 03/2017

24.2.2 Tableaux de sélection motoréducteur brushless synchrone

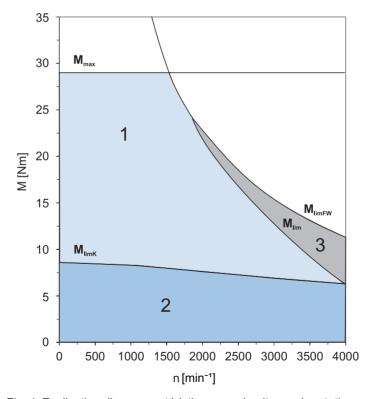
n _{2N}	M _{2N}	M _{2,0}	a _{th}	S	Туре	M _{2acc}	M _{2NOT}	i	i _{exakt}	n _{1max} DB	n _{1max} ZB	J ₁	$\Delta\phi_2$	C ₂	m
[min ⁻¹]	[Nm]	[Nm]				[Nm]	[Nm]			[min ⁻¹]	[min ⁻¹]	[10-4	[arcmin]	[Nm/	[kg]
												kgm²]		arcmin]	
EZHP_5 (n	ı _{1N} = 3000	min ⁻¹ , M ₂	acc may =	200 Nr	n)										
111	75	103	9,4	1,6	EZHP3511U	200	400	27,00	27/1	3500	4500	13	4	81	12
333	26	35	17	3,2	EZHP2511U	140	400	9,000	9/1	2700	4500	13	4	84	11
333	60	67	40	1,4	EZHP2512U	200	400	9,000	9/1	2700	4500	16	4	84	13
333	71	93	47	1,2	EZHP2513U	200	400	9,000	9/1	2700	4500	19	4	84	15
1000	8,7	12	23	6,6	EZHP1511U	47	400	3,000	3/1	2000	4500	14	3	101	9,2
1000	20	23	53	2,8	EZHP1512U	90	400	3,000	3/1	2000	4500	17	3	101	11
1000	24	32	63	2,4	EZHP1513U	130	400	3,000	3/1	2000	4500	20	3	101	13
1000	41	48	106	1,4	EZHP1515U	190	400	3,000	3/1	2000	4500	26	3	101	16
EZHP_7 (n	= 3000	min ⁻¹ M.	. =	500 Nr	m)										
111	183	198	9,5	1.7	EZHP3711U	500	1000	27,00	27/1	3000	3500	36	4	215	23
111	291	362	15	1,1	EZHP3712U	500	1000	27,00	27/1	3000	3500	45	4	215	25
333	62	68	20	3.4	EZHP2711U	170	1000	9,000	9/1	2000	3500	36	4	217	20
333	99	123	32	2.2	EZHP2712U	350	1000	9,000	9/1	2000	3500	45	4	217	23
333	152	174	50	1,4	EZHP2713U	500	1000	9,000	9/1	2000	3500	54	4	217	26
333	210	266	69	1,0	EZHP2715U	500	1000	9,000	9/1	2000	3500	73	4	217	32
1000	21	23	23	7,0	EZHP1711U	58	1000	3,000	3/1	1600	3500	39	3	259	17
1000	34	42	36	4,4	EZHP1712U	120	1000	3,000	3/1	1600	3500	48	3	259	20
1000	52	59	56	2,9	EZHP1713U	190	1000	3,000	3/1	1600	3500	57	3	259	23
1000	72	91	77	2,1	EZHP1715U	300	1000	3,000	3/1	1600	3500	76	3	259	29

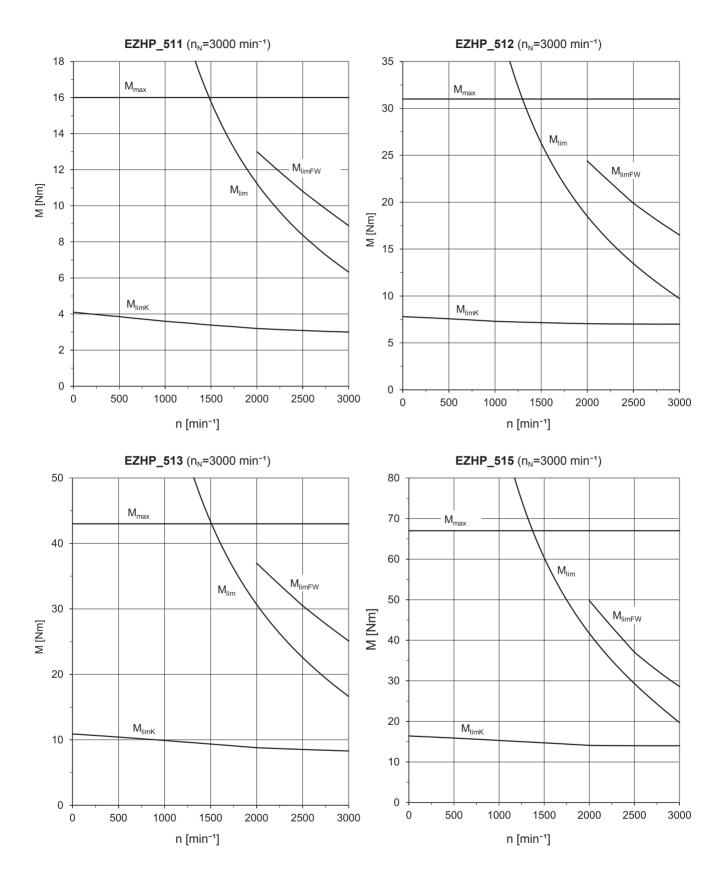
24.3 Caractéristiques couple-vitesse de rotation

Les caractéristiques couple-vitesse de rotation dépendent de la vitesse de rotation nominale et/ ou du type de bobine du moteur et de la tension du circuit intermédiaire du servo-variateur utilisé. Les caractéristiques couple-vitesse de rotation suivantes s'appliquent à la tension de circuit intermédiaire de 540 V.

Les caractéristiques couple-vitesse de rotation suivantes s'appliquent aux motoréducteurs brushless synchrones EZHP sans composants de réducteur. Caractéristiques couple-vitesse de rotation du motoréducteur brushless synchrone EZHP intégral, voir http://products.stoeber.de.

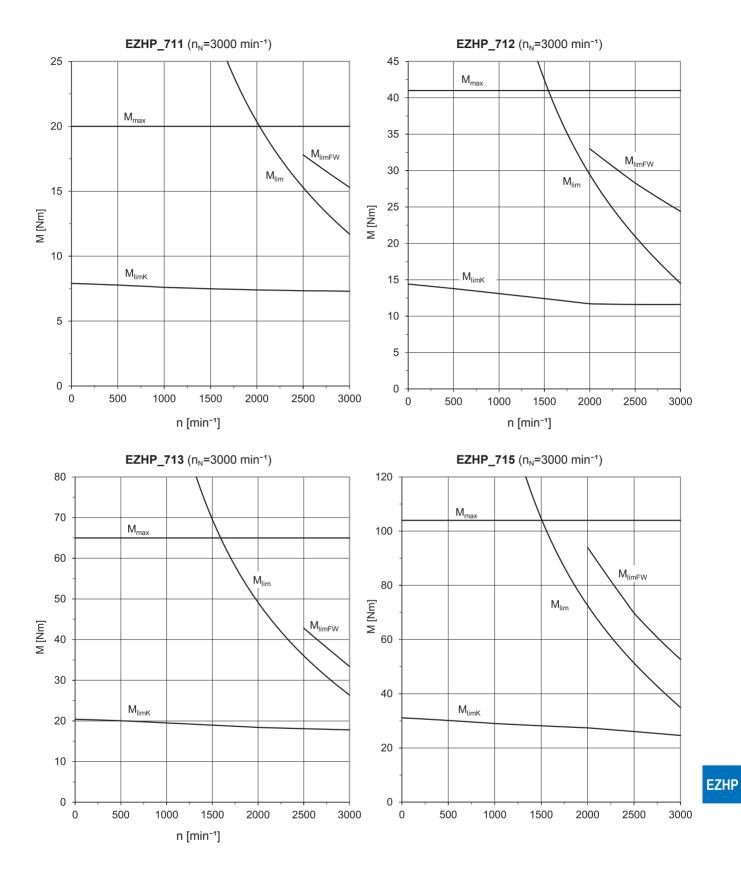
Signes convenus	Unité	Explication
ED	%	Durée de mise en service rapportée à 20 minutes
M_{lim}	Nm	Limite de couple sans compensation du défluxage
M_{limFW}	Nm	Limite de couple avec compensation du défluxage (uniquement pour l'exploitation sur servo-variateurs)
M_{limK}	Nm	Limite de couple du moteur avec refroidissement par convection
M_{max}	Nm	Couple maximal : couple maximal que le moteur peut donner brièvement (à l'accélération ou au freinage) (tolérance ±10 %)
n _N	min ⁻¹	Vitesse de rotation nominale : vitesse de rotation indiquée pour le couple nominal $\ensuremath{M}_{\ensuremath{N}}$
Δθ	K	Différence de température




Fig. 1: Explication d'une caractéristique couple-vitesse de rotation

1	Couple pour régime temporaire (ED < 100 %) à $\Delta\vartheta$ = 100 K	2	Couple pour régime continu à charge constante (mode S1, ED = 100 %) à $\Delta \vartheta$ = 100 K
3	Plage de défluxage (utile uniquement en cas d'exploitation sur servo-variateurs)		

EZHP

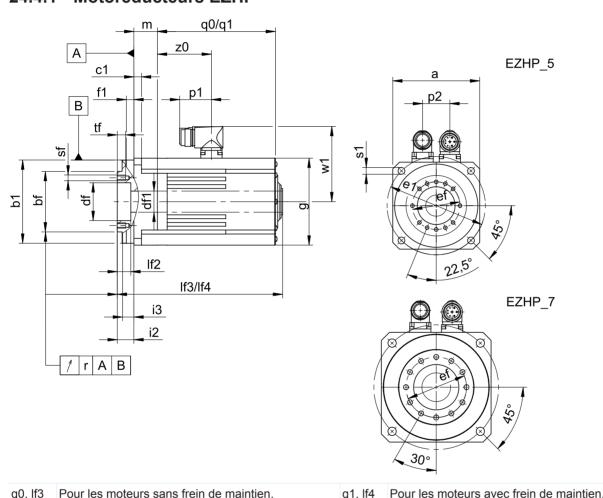

ID 442437_fr.03 – 03/2017 799

800 ID 442437_fr.03 – 03/2017

24.4 Croquis cotés

Ce chapitre vous donne des informations sur les dimensions des moteurs.

ID 442437_fr.03 - 03/2017 801



En raison des tolérances dimensionnelles pour les pièces moulées et la somme des tolérances individuelles, les dimensions indiquées peuvent dépasser les spécifications de la norme ISO 2768-mK.

Sous réserve de modifications des dimensions en raison du perfectionnement technique.

Vous pouvez télécharger les modèles CAO de nos entraînements standard sur http://cad.stoe-ber.de.

24.4.1 Motoréducteurs EZHP

qu, iis	roui	Four les moteurs sans hein de maintien.								q1, 114 Four les moteurs avec frein de maintien.																
Туре	□а	Øb1	Øbf	с1	Ødf	Ødf1	Øe1	Øef	f1	□g	i2	i3	lf2	lf3	lf4	m	p1	p2	q0	q1	r	Øs1	sf	tf	w1	z0
EZHP1511U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	218,6	273,9	24,0	40	36	156,1	211,4	0,020	9	M6	11	100	71,5
EZHP1512U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	243,6	298,9	24,0	40	36	181,1	236,4	0,020	9	M6	11	100	96,5
EZHP1513U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	268,6	323,9	24,0	40	36	206,1	261,4	0,020	9	M6	11	100	121,5
EZHP1515U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	318,6	373,9	24,0	40	36	256,1	311,4	0,020	9	M6	11	100	171,5
EZHP1711U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	247,7	307,7	29,5	40	42	170,7	230,7	0,025	11	M8	14	115	77,2
EZHP1712U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	272,7	332,7	29,5	40	42	195,7	255,7	0,025	11	M8	14	115	102,2
EZHP1713U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	297,7	357,7	29,5	40	42	220,7	280,7	0,025	11	M8	14	115	127,2
EZHP1715U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	352,7	412,7	29,5	71	42	275,7	335,7	0,025	11	M8	14	134	178,2
EZHP2511U	115	110 _{h7}	80_{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	243,1	298,4	48,5	40	36	156,1	211,4	0,020	9	M6	11	100	71,5
EZHP2512U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	268,1	323,4	48,5	40	36	181,1	236,4	0,020	9	M6	11	100	96,5
EZHP2513U	115	110 _{h7}	80_{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	293,1	348,4	48,5	40	36	206,1	261,4	0,020	9	M6	11	100	121,5
EZHP2711U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	275,2	335,2	57,0	40	42	170,7	230,7	0,025	11	M8	14	115	77,2
EZHP2712U	145	140_{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	300,2	360,2	57,0	40	42	195,7	255,7	0,025	11	M8	14	115	102,2
EZHP2713U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	325,2	385,2	57,0	40	42	220,7	280,7	0,025	11	M8	14	115	127,2
EZHP2715U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	380,2	440,2	57,0	71	42	275,7	335,7	0,025	11	M8	14	134	178,2
EZHP3511U	115	110 _{h7}	80 _{h7}	10	50 ^{H7}	28	130	63	10	115	29	22,5	18	267,6	322,9	73,0	40	36	156,1	211,4	0,020	9	M6	11	100	71,5
EZHP3711U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	302,7	362,7	84,5	40	42	170,7	230,7	0,025	11	M8	14	115	77,2
EZHP3712U	145	140 _{h7}	100 _{h7}	15	60 ^{H7}	38	165	80	10	145	38	31,0	20	327,7	387,7	84,5	40	42	195,7	255,7	0,025	11	M8	14	115	102,2

24.5 Désignation de type

Code donné à titre d'exemple

EZH	Р	2	5	1	1	U	F	AD	B1	0	097
		_	•					- 1		•	

Explication

Code	Désignation	Version
EZH	Туре	Moteur brushless synchrone avec arbre creux
P	Entraînement	Réducteur planétaire monté
1 2 3	Rapports	1 rapport (i=3) 2 rapports (i=9) 3 rapports (i=27)
5	Taille	5 (exemple)
1	Génération	1
1	Longueur	1 (exemple)
U	Mode de refroidissement	Refroidissement par convection
F	Sortie	Bride
AD	Servo-variateurs	SD6 (exemple)
B1	Encodeur	EBI 135 EnDat 2.2 (exemple)
0 P	Frein	Sans frein de maintien Frein de maintien à aimant permanent
097	Constante électromagnétique (EMK) K_{EM}	97 V/1 000 min ⁻¹ (exemple)

Remarques

- Le chapitre [▶ 24.6.7] vous donne des informations sur les encodeurs disponibles.
- Le chapitre [> 24.6.7.3] vous donne des informations sur le branchement des motoréducteurs brushless synchrones sur d'autres servo-variateurs .
- Le chapitre [▶ 27] vous donne des informations sur le branchement des moteurs brushless synchrones sur des servo-variateurs d'une autre marque.

24.6 Description du produit

24.6.1 Caractéristiques générales

Caractéristique	Description			
Conception	IM B5, IM V1, IM V3 selon EN 60034-7/A1			
Degré de protection	IP56 / IP66 (option)			
Classification thermique	155 (F) selon EN 60034-1 (155 °C, échauffement $\Delta\vartheta$ = 100 K)			
Température maximale sur la surface du motoréducteur	≤ 80 °C			
Surface ¹	Noire mate RAL 9005			
Mode de refroidissement	IC 410 Refroidissement par convection			
Étanchéité	Bague gamma (sur côté B), joint à lèvre (sur côté A)			
Arbre	Bride arbre creux			

¹Une autre laque du moteur entraîne la modification des caractéristiques thermiques et, par conséquent, des limites de performance.

ID 442437_fr.03 - 03/2017

EZHP

Caractéristique	Description
Vibrations	A selon EN 60034-14/A1
Niveau sonore	Valeurs limites selon EN 60034-9/A1 (composants moteur) Valeurs limites selon VDI 2159 (composants réducteur)

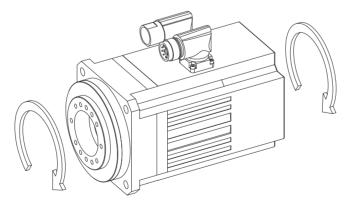
24.6.2 Caractéristiques électriques

Ce chapitre est consacré aux caractéristiques électriques générales des composants moteur du motoréducteur. Détails, voir chapitre Tableaux de sélection.

Caractéristique	Description
Tension de circuit intermé- diaire	DC 540 V (max. 620 V) sur servo-variateurs
Bobinage	Triphasé en bobinage dentaire
Montage	En étoile, point neutre non sorti
Protection	I (mise à la terre) selon EN 61140/A1
Nombre de paires de pôles	7

24.6.3 Conditions de montage

Les couples et forces indiqués ne s'appliquent que pour une fixation des réducteurs côté machine par des vis, classe de qualité 10.9. Par ailleurs, il faut adapter (H7) le carter au niveau du bord ajusté.


24.6.4 Lubrifiants

remplit les réducteurs avec le lubrifiant, dont le modèle et la quantité sont indiqués sur la plaque signalétique.

Les Quantité de lubrifiant pour réducteur, document ID 441871, voir

24.6.5 Sens de rotation

Entrée et sortie tournent dans le même sens.

24.6.6 Conditions ambiantes

Ce chapitre est consacré aux conditions ambiantes standard pour le transport, le stockage et l'exploitation du motoréducteur.

Caractéristique	Description
Température ambiante transport/stockage	de -30 à +85 °C
Température ambiante en service	de -15 à +40 °C

Caractéristique	Description
Altitude	≤ 1 000 m
Tenue aux chocs	≤ 50 m/s² (5 g), 6 ms selon EN 60068-2-27

Remarques

- Les motoréducteurs brushless synchrones EHZP ne sont pas conçus pour l'exploitation en milieu explosif en vertu de la Directive ATEX.
- Intercepter le câble de raccordement à proximité du moteur afin de protéger les connecteurs moteur des éventuelles vibrations générées par le câble.
- Veuillez noter que les chocs sont susceptibles de réduire les couples de freinage du frein de maintien (option).
- Veuillez également tenir compte des chocs soumis au motoréducteur provoqués par des groupes de sortie auxquels le motoréducteur est accouplé.

24.6.7 Encodeur

Les moteurs brushless synchronesSTÖBER peuvent être équipés de différents encodeurs. Les chapitres suivants vous guident dans le choix d'un encodeur adapté à votre application.

24.6.7.1 Guide de sélection interface EnDat

Le tableau suivant vous aide à trouver l'interface EnDat des encodeurs absolus.

Caractéristique	EnDat 2.1	EnDat 2.2
Cycles courts	**☆	***
Transmission d'informations supplémentaires avec la valeur de position	_	✓
Plage d'alimentation en tension élargie	★★☆	***
Légende : ★★☆ = bien, ★★★ = très bien		

24.6.7.2 Encodeur EnDat

Ce chapitre vous donne des informations sur les caractéristiques techniques des encodeurs avec interface EnDat qu'il est possible de choisir.

Encodeur avec interface EnDat 2.2

Type d'enco- deur	Code	Principe de mesure	Nombre de tours saisis-sables	Résolution	Valeurs de po- sition par tour
EBI 135	B1	Inductif	65536	19 Bit	524288
ECI 119-G2	C9	Inductif	_	19 Bit	524288

Encodeur avec interface EnDat 2.1

Type d'enco- deur	Code	•	Nombre de tours saisis-sables		Valeurs de po- sition par tour	•
ECI 119	C4	Inductif	_	19 Bit	524288	Sin/cos 32

Remarques

- Le code de l'encodeur est partie intégrante de la désignation de type du moteur.
- Seuls les encodeurs Multiturn sont en mesure de saisir plusieurs tours de l'arbre moteur.
- L'encodeur EBI 135 requiert une batterie tampon externe afin que l'information de position absolue soit sauvegardée après la mise hors circuit (option AES pour les servovariateurs).

EZHP

ID 442437_fr.03 - 03/2017

24.6.7.3 Combinaison avec servo-variateurs

Le tableau suivant récapitule les combinaisons de servo-variateurs et d'encodeurs possibles.

Servo-variat	eurs	SDS 5000	MDS 5000	SDS 5000 sin/cos MDS 5000 sin/cos	SD6	SD6 sin/cos	SI6	SI6 sin/cos
Code servo-	variateur	AA	AB	AC	AD	AE	AP	AQ
ID plan de ca	âblage	442305	442306	442307	442450	442451	442771	442772
Encodeur	Code enco- deur							
EBI 135	B1	✓	✓	-	✓	-	✓	-
ECI 119-G2	C9	✓	✓	-	✓	-	✓	-
ECI 119	C4	_	_	✓	_	✓	_	_

Remarques

- Les codes du servo-variateur et de l'encodeur sont partie intégrante de la désignation de type du moteur (voir chapitre Désignation de type).
- Le chapitre [▶ 27] vous donne des informations sur le branchement des moteurs brushless synchrones sur des servo-variateurs d'une autre marque.

24.6.8 Sonde thermique

Ce chapitre vous donne des informations sur les caractéristiques techniques des sondes thermiques pouvant être montées dans un moteur brushless synchrone afin de réaliser la protection thermique du bobinage. Afin d'éviter tout dommage du moteur, il est impératif que vous surveilliez la sonde thermique au moyen d'appareils correspondants qui mettent le moteur hors service en cas de dépassement de la température d'enroulement maximale.

Certains encodeurs sont dotés d'un propre dispositif de surveillance thermique de l'électronique d'exploitation intégrée dont les seuils d'avertissement et de désactivation peuvent se chevaucher avec les valeurs réglées dans le servo-variateur pour la sonde thermique. Le cas échéant, cela peut conduire à ce que ce type d'encodeur force une mise hors service du moteur bien avant qu'il ait atteint ses données nominales.

Pour tous renseignements complémentaires sur le branchement électrique d'une sonde thermique, voir chapitre Technique de branchement.

24.6.8.1 Résistance CTP

La résistance CTP est montée en série dans les moteurs brushless synchrones . La résistance CTP est une sonde triple conforme à la norme DIN 44082 permettant de surveiller la température d'enroulement.

Les résistances indiquées dans le tableau et la caractéristique suivants sont celles d'une sonde simple conforme à la norme DIN 44081. Pour une sonde triple conforme à la norme DIN 44082, il vous suffit de multiplier ces valeurs par 3.

Caractéristique	Description
Température nominale de fonctionnement ϑ_{NAT}	145 °C ± 5 K
Résistance R de −20 °C à ϑ_{NAT} − 20 K	≤ 250 Ω
Résistance R à ϑ_{NAT} – 5 K	≤ 550 Ω
Résistance R à ϑ_{NAT} + 5 K	≥ 1330 Ω
Résistance R à ϑ_{NAT} + 15 K	≥ 4000 Ω
Tension de service	≤ DC 7,5 V

Caractéristique	Description
Temps de réponse thermique	< 5 s
Classification thermique	155 (F) selon EN 60034-1 (155 °C, échauffement $\Delta\vartheta$ = 100 K)

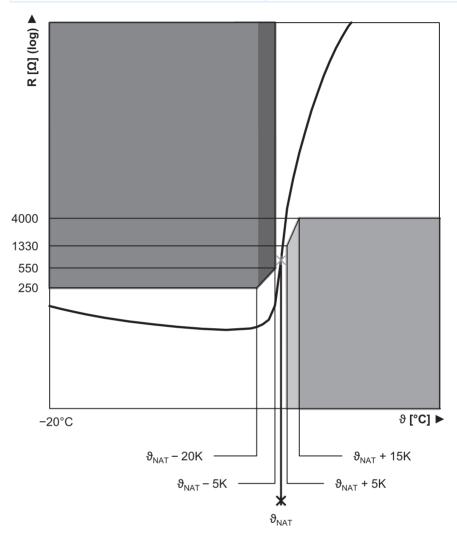


Fig. 2: Caractéristique résistance CTP (sonde simple)

24.6.8.2 Sonde thermique Pt1000

Les moteurs brushless synchrones peuvent être équipés en option d'une sonde ther-mique Pt1000. La Pt1000, une sonde thermique à caractéristique linéaire, permet ainsi de me-surer la température d'enroulement. Ces mesures sont toutefois limitées à une phase du bobinage moteur. Afin de protéger suffisamment le moteur contre le dépassement de la température maximale, réalisez dans le servo-variateur un dispositif de surveillance de la température d'enroulement via un modèle i²t.

Afin de ne pas fausser les mesures en raison de la propre chaleur de la sonde thermique, évitez de dépasser le courant de mesure indiqué.

Caractéristique	Description
Courant de mesure (constant)	2 mA
Résistance R à ϑ = 0 °C	1000 Ω
Résistance R à ϑ = 80 °C	1300 Ω
Résistance R à ϑ = 150 °C	1570 Ω

EZHP

ID 442437_fr.03 - 03/2017

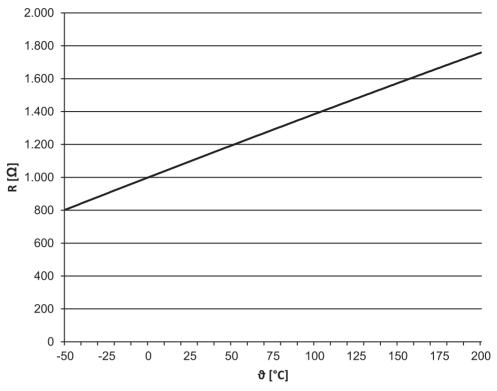


Fig. 3: Caractéristique sonde thermique Pt1000

24.6.9 Mode de refroidissement

Le refroidissement d'un motoréducteur brushless synchrone EZHP est assuré par convection (IC 410 selon EN 60034-6). L'air qui entoure le motoréducteur est réchauffé par la chaleur du moteur et monte.

24.6.10 Frein de maintien

Les moteurs brushless synchrones peuvent être équipés en option d'un frein de main-tien à aimant permanent sans jeu permettant d'immobiliser l'arbre moteur à l'arrêt. Le frein de maintien se serre automatiquement en cas de chute de tension.

Tension nominale du frein de maintien à aimant permanent : DC 24 V \pm 5 %, lissée. Tenez compte des chutes de tension dans les câbles d'alimentation du frein de maintien.

Au moment de la configuration, respectez les points suivants :

- Le frein de maintien peut être exceptionnellement utilisé pour les freinages à pleine vitesse de rotation en cas de panne de courant ou au moment de configurer la machine. Dans ce contexte, il faut veiller à ne pas dépasser le travail de frottement W_{B,Rmax/h}. Pendant l'exploitation, effectuez les autres freinages par l'intermédiaire de la fonction de freinage du servovariateur afin d'éviter l'usure anticipée du frein de maintien.
- En cas de freinages à pleine vitesse de rotation, veuillez tenir compte du fait que le couple de freinage M_{Bdyn} peut être au début plus de 50 % plus faible, le freinage sera alors retardé et les distances de freinage plus longues.
- Effectuez régulièrement un test de freinage afin de garantir le bon fonctionnement des freins. Pour tout renseignement complémentaire, consultez la documentation du moteur et du servo-variateur.
- Outre la bobine de frein, connectez une varistance de type S14 K35 (ou autre) afin de protéger votre machine des surtensions. (Inutile en cas de branchement du frein de maintien au servo-variateur avec module de freinage BRS/BRM).

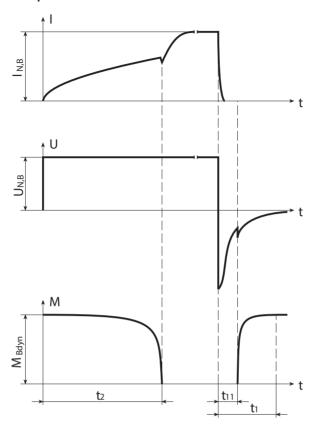
- Le frein de maintien du moteur brushless synchrone n'offre pas de sécurité suffisante aux personnes se trouvant dans le périmètre de sécurité d'axes verticaux. C'est la raison pour laquelle vous devez prendre d'autres mesures visant à minimiser le risque (par ex. prévoir une infrastructure mécanique pour les travaux de maintenance).
- Tenez compte des chutes de tension dans les câbles d'alimentation entre la source de tension et les prises du frein de maintien.
- Le couple de maintien du frein peut se réduire en raison des chocs. Pour tout renseignement complémentaire sur la tenue aux chocs, voir le chapitre Conditions ambiantes.

Signes convenus	Unité	Explication
$I_{N,B}$	Α	Courant nominal du frein à 20 °C
$\Delta J_{\scriptscriptstyle B}$	10 ⁻⁴ kgm ²	Couple d'inertie supplémentaire d'un moteur avec frein de maintien
J	10 ⁻⁴ kgm ²	Inertie de la charge
J_{Bstop}	10 ⁻⁴ kgm ²	Couple d'inertie de référence en cas de freinage à pleine vitesse de rotation : $J_{\text{Bstop}} = J \times 2$
J_{tot}	10 ⁻⁴ kgm ²	Couple d'inertie totale (par rapport à l'arbre moteur)
$\Delta m_{\scriptscriptstyle B}$	kg	Poids supplémentaire d'un moteur avec frein de maintien
M_{Bdyn}	Nm	Couple de freinage dynamique à 100 °C (tolérance +40 %, -20 %)
M _{Bstat}	Nm	Couple de freinage statique à 100 °C (tolérance +40 %, -20 %)
M_L	Nm	Couple de charge
N_{Bstop}	-	Nombre admissible de freinage à pleine vitesse de rotation (n = $3~000~\text{min}^{-1}$) avec J_{Bstop} ($M_L = 0$). En cas de n et J_{Bstop} divergents, la formule suivante s'applique : $N_{\text{Bstop}} = W_{\text{B,Rlim}} / W_{\text{B,R/B}}$.
n	min ⁻¹	Vitesse de rotation
t ₁	ms	Temps d'enclenchement : intervalle entre la mise hors circuit et l'atteinte du couple de freinage nominal
t_2	ms	Temps de coupure : intervalle entre la mise en circuit et le début de la chute du couple
t ₁₁	ms	Retard de réponse : intervalle entre la mise hors circuit et la montée en couple
t _{dec}	ms	Temps de freinage
$U_{N,B}$	V	Tension nominale du frein (DC 24 V ± 5 % (lissée))
$W_{B,R/B}$	J	Travail de frottement par freinage
$W_{\text{B,Rlim}}$	J	Travail de frottement jusqu'au seuil d'usure
$W_{B,Rmax/h}$	J	Travail de frottement maximal par heure en cas de freinage individuel
$\mathbf{X}_{B,N}$	mm	Entrefer nominal du frein

Calcul du travail de frottement par freinage

$$W_{\text{B,R/B}} = \frac{J_{\text{tot}} \cdot n^2}{182,4} \cdot \frac{M_{\text{Bdyn}}}{M_{\text{Bdyn}} \pm M_{\text{L}}}$$

Le signe de M_L est positif en cas de mouvement vertical vers le haut ou horizontal et négatif en cas de mouvement vertical vers le bas.


Calcul du temps de freinage

$$t_{\text{dec}} = 2,66 \cdot t_{\text{1}} + \frac{n \cdot J_{\text{tot}}}{9,55 \cdot M_{\text{Bdyn}}}$$

EZHP

Comportement à la commutation

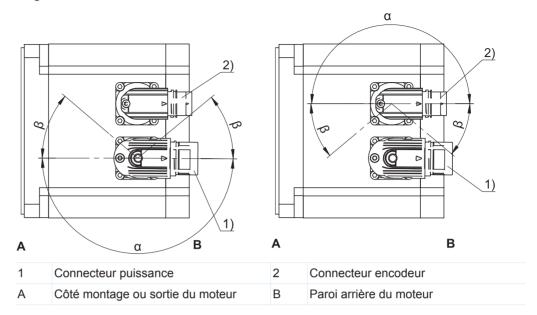
Données techniques

	M _{Bstat}	\mathbf{M}_{Bdyn}	$I_{N,B}$	$\mathbf{W}_{\mathrm{B,Rmax/h}}$	$N_{B,stop}$	$\mathbf{J}_{B,stop}$	$\mathbf{W}_{\mathrm{B,Rlim}}$	t ₂	t ₁₁	t ₁	$\mathbf{X}_{B,N}$	$\Delta J_{\scriptscriptstyle B}$	$\Delta m_{\scriptscriptstyle B}$
	[Nm]	[Nm]	[A]	[kJ]		[10 ⁻⁴ kgm²]	[kJ]	[ms]	[ms]	[ms]	[mm]	[10 ⁻⁴ kgm²]	[kg]
EZHP_511	18	15	1,1	11,0	3250	34,1	550	55	3,0	30	0,3	5,450	2,32
EZHP_512	18	15	1,1	11,0	2750	40,2	550	55	3,0	30	0,3	5,450	2,32
EZHP_513	18	15	1,1	11,0	2400	46,3	550	55	3,0	30	0,3	5,450	2,32
EZHP_515	18	15	1,1	11,0	1850	58,8	550	55	3,0	30	0,3	5,450	2,32
EZHP_711	28	25	1,1	25,0	3200	88,6	1400	120	4,0	40	0,4	12,620	3,91
EZHP_712	28	25	1,1	25,0	2650	107	1400	120	4,0	40	0,4	12,620	3,91
EZHP_713	28	25	1,1	25,0	2250	125	1400	120	4,0	40	0,4	12,620	3,91
EZHP_715	28	25	1,1	25,0	1700	162	1400	120	4,0	40	0,4	12,620	3,91

24.6.11 Technique de branchement

Les chapitres suivants décrivent la technique de branchement entre les moteurs brushless syn-chrones standard et les servo-variateurs . Pour tous renseignements com-plémentaires sur votre servo-variateur, voir le plan de câblage livré avec chaque moteur brush-less synchrone.

Le chapitre [> 27] vous donne des informations sur le branchement des moteurs brushless syn-chrones sur des servo-variateurs d'une autre marque.


24.6.11.1 Connecteurs

Les moteurs brushless synchrones standard sont dotés de connecteurs tournants avec fermeture rapide. Détails, voir le présent chapitre.

Les illustrations montrent la position des connecteurs à la livraison.

Plages de rotation des connecteurs

Caractéristiques connecteur puissance

Type de moteur	Taille	Taille Connexion		Plage de rotation		
			α	β		
EZHP_5, EZHP_711 – EZHP_713	con.23	Fermeture rapide	180°	40°		
EZHP_715	con.40	Fermeture rapide	180°	40°		

Caractéristiques connecteur encodeur

Type de moteur	Taille	Connexion	Plage de	rotation
			α	β
EZHP	con.17	Fermeture rapide	180°	20°

Remarques

- Le chiffre après « con. » indique le diamètre nominal des filetages approximatif du connecteur en mm an (con.23 désigne par ex. un connecteur d'env. 23 mm).
- Dans la plage de rotation β, les connecteurs puissance et encodeur ne peuvent être tournés que s'ils n'entrent pas en collision.

24.6.11.2 Mettre le carter moteur à la terre

Brancher le carter moteur au conducteur de protection de la machine afin de protéger les personnes et éviter les déclenchements erronés des disjoncteurs différentiels.

Tous les accessoires de fixation requis pour le branchement du conducteur de protection au carter moteur sont livrés avec le moteur. La vis de mise à la terre du moteur est signalée par le symbole en vertu de IEC 60417-DB. La section minimale du conducteur de protection est déterminée dans le tableau suivant.

EZHP

Section conducteur de protection en cuivre dans le câble d'alimentation (A)	Section conducteur de protection en cuivre pour carter moteur $(A_{\scriptscriptstyle E})$
A < 10 mm ²	$A_E = A$
A ≥ 10 mm²	A _E ≥ 10 mm²

ID 442437_fr.03 – 03/2017

24.6.11.3 Brochage connecteur puissance

La taille et le plan de câblage du connecteur puissance dépendent de la taille du moteur. Les fils de raccordement internes sont marqués selon la norme IEC 60757.

Connecteur con.23 (1)

Plan de câblage	Broche	Connexion	Couleur
	1	1U1 (phase U)	BK
	3	1V1 (phase V)	BU
	4	1W1 (phase W)	RD
	Α	1BD1 (frein +)	RD
	В	1BD2 (frein -)	BK
	С	1TP1/1K1 (sonde thermique)	
	D	1TP2/1K2 (sonde thermique)	
		PE (conducteur de protection)	GNYE

Connecteur con.40 (1,5)

Plan de câblage	Broche	Connexion	Couleur
	U	1U1 (phase U)	ВК
/_O O+	V	1V1 (phase V)	BU
	W	1W1 (phase W)	RD
	+	1BD1 (frein +)	RD
	-	1BD2 (frein -)	BK
	1	1TP1/1K1 (sonde thermique)	
	2	1TP2/1K2 (sonde thermique)	
		PE (conducteur de protection)	GNYE

24.6.11.4 Brochage connecteur encodeur

La taille et le plan de câblage du connecteur encodeur dépendent de l'encodeur installé et de la taille du moteur. Les fils de raccordement internes sont marqués selon la norme IEC 60757.

Encodeur EnDat 2.1/2.2 numérique, connecteur con.17

Plan de câblage	Broche	Connexion	Couleur
(76-5)	1	Clock +	VT
90	2	Up sense	BN GN
(8 U 2)	3		
	4		
	5	Data -	PK
	6	Data +	GY
	7		
	8	Clock -	YE
	9		
	10	0 V GND	WH GN
	11		
	12	Up +	BN GN
	Dans la l	poîte d'encastrement, les broches 2 et	12 sont reliées

Encodeur EnDat 2.2 numérique avec batterie tampon, connecteur con.17

Plan de câblage	Broche	Connexion	Couleur
	1	Clock +	VT
90	2	UBatt +	BU
(8 U 2)	3	UBatt -	WH
	4		
	5	Data -	PK
	6	Data +	GY
	7		
	8	Clock -	YE
	9		
	10	0 V GND	WH GN
	11		
	12	Up +	BN GN
	UBatt + = servo-va	DC 3,6 V pour encodeur EBI associé riateurs	à l'option AES de

EZHP

ID 442437_fr.03 – 03/2017 813

Encodeur EnDat 2.1 avec signaux incrémentaux sin/cos, connecteur con.17

Plan de câblage	Broche	Connexion	Couleur
(7005)	1	Up sense	BU
	2		
	3		
	4	0 V sense	WH
<u> </u>	5		
	6		
	7	Up +	BN GN
	8	Clock +	VT
	9	Clock -	YE
	10	0 V GND	WH GN
	11		
	12	B + (Sin +)	BU BK
	13	B - (Sin -)	RD BK
	14	Data +	GY
	15	A + (Cos +)	GN BK
	16	A - (Cos -)	YE BK
	17	Data -	PK

24.7 Configuration

Planifiez vos entraînements au moyen de notre logiciel de conception SERVOsoft gratuit. N'hésitez pas à demander conseil à votre partenaire dans l'une de nos agences. Respectez les conditions limites indiquées dans le présent chapitre pour une conception fiable de vos entraînements.

24.7.1 Calcul du point de fonctionnement

Ce chapitre vous donne des informations indispensables au calcul du point de fonctionnement. Les symboles pour les valeurs réelles dans l'application sont désignés par un *.

Signes convenus	Unité	Explication
a _{th}	_	Paramètre pour calculer K _{mot,th}
ED	%	Durée de mise en service rapportée à 20 minutes
fB_{op}	_	Coefficient mode d'exploitation
fB_t	_	Coefficient durée de service
fB_T	_	Coefficient température
i	_	Rapport de réduction
$K_{\text{mot,th}}$	_	Coefficient permettant de déterminer le couple limite thermique
$ M_2 $	Nm	Montant du couple à la sortie
$M_{2,1^*} - M_{2,6^*}$	Nm	Couple disponible au cours de la période respective (de 1 à 6)
M _{2acc}	Nm	Couple d'accélération maximal admissible à la sortie du réducteur
M _{2acc*}	Nm	Couple d'accélération disponible à la sortie du réducteur
M _{2eff*}	Nm	Couple effectif disponible à la sortie du réducteur
M _{2eq*}	Nm	Couple équivalent disponible à la sortie du réducteur

Signes convenus	Unité	Explication
M _{2N}	Nm	Couple nominal à la sortie du réducteur (par rapport à n_{1N})
M_{2NOT}	Nm	Couple d'arrêt d'urgence contrôlé du réducteur à la sortie du réducteur pour max. 1 000 charges alternées
M_{2NOT^*}	Nm	Couple d'arrêt d'urgence contrôlé du réducteur disponible à la sortie du réducteur
M _{2th}	Nm	Couple limite thermique à la sortie du réducteur
M_{op}	Nm	Couple du moteur dans le point de fonctionnement à partir de la caractéristique moteur si $n_{1m^{\ast}}$
n _{1m*}	min ⁻¹	Vitesse d'entrée moyenne disponible
n _{1max*}	min ⁻¹	Vitesse d'entrée maximale disponible
n _{1maxDB}	min ⁻¹	Vitesse d'entrée maximale admissible du réducteur en exploitation continue
n _{1maxZB}	min ⁻¹	Vitesse d'entrée maximale admissible du réducteur en fonctionne- ment alterné
n ₂	min ⁻¹	Montant de la vitesse de sortie
$n_{2m,1^*} - n_{2m,6^*}$	min ⁻¹	Vitesse de sortie moyenne disponible au cours de la période respective (de 1 à 6)
n _{2m*}	min ⁻¹	Vitesse de sortie moyenne disponible
n _N	min ⁻¹	Vitesse de rotation nominale : vitesse de rotation indiquée pour le couple nominal M_N
S	-	Caractéristique de la charge : quotient des couples nominaux du réducteur et du moteur sans tenir compte de la puissance limite thermique. Représente une dimension pour la réserve du motoréducteur.
t	s	Temps
$t_{1^*} - t_{6^*}$	s	Durée de la période respective (de 1 à 6)

En ce qui concerne les points de fonctionnement autres que le point nominal M_{2N} indiqué dans les tableaux de sélection, vérifiez les conditions suivantes.

$$n_{\text{1m*}} \leq \frac{n_{\text{1maxDB}}}{fB_{T}}$$

$$n_{1\text{max}^*} \leq \frac{n_{1\text{max}\,ZB}}{fB_T}$$

$$M_{2eff^*} \leq M_{2th}$$

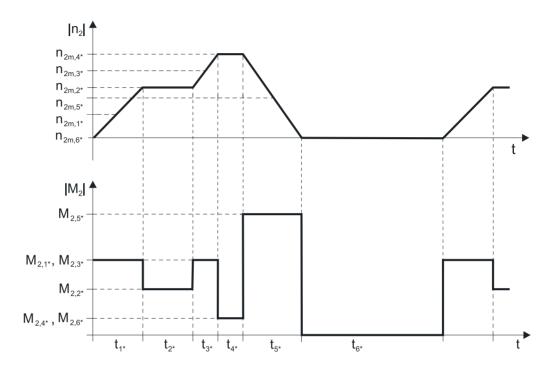
$$M_{2acc^*} \leq M_{2acc}$$

$$M_{2NOT^*} \leq M_{2NOT}$$

$$M_{2\text{eq}^*} \leq M_{2N} \cdot \frac{S}{fB_{\text{op}} \cdot fB_t}$$

Consultez les tableaux de sélection pour connaître les valeurs de n_{1maxDB} , n_{1maxZB} , M_{2acc} , M_{2NOT} , M_{2N} et S.

Consultez les tableaux respectifs dans ce chapitre pour connaître les valeurs fB_T , fB_{op} et fB_t . Calculez le couple limite thermique M_{2th} pour une durée de mise en service > 50 %.


EZHP

24 Motoréducteurs brushless synchrones avec arbre creux EZHP 24.7 Configuration

Exemple de cadence

Les calculs suivants se rapportent à une représentation de la puissance mesurée à la sortie conformément à l'exemple suivant :

Calcul de la vitesse d'entrée moyenne disponible

$$n_{_{1m^{\star}}}=n_{_{2m^{\star}}}\cdot i$$

$$n_{2m^*} = \frac{\left| n_{2m,1^*} \right| \cdot t_{1^*} + \ldots + \left| n_{2m,n^*} \right| \cdot t_{n^*}}{t_{1^*} + \ldots + t_{n^*}}$$

Si t_{1^*} + ... + $t_{5^*} \ge 20$ min, calculez n_{2m^*} sans la pause t_{6^*} .

Consultez les tableaux de sélection pour connaître les valeurs de la réduction i.

Calcul du couple effectif disponible

$$\mathsf{M}_{\mathsf{2eff}^*} = \sqrt{\frac{{t_{1^*}} \cdot {\mathsf{M}_{2,1^*}}^2 + \ldots + {t_{n^*}} \cdot {\mathsf{M}_{2,n^*}}^2}{{t_{1^*}} + \ldots + {t_{n^*}}}}$$

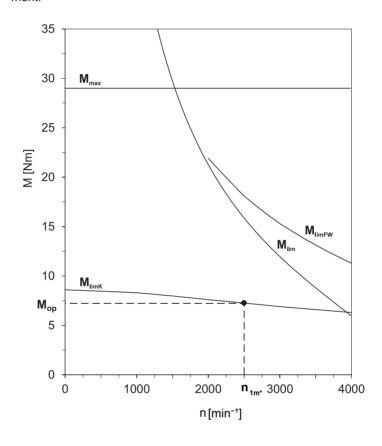
Calcul du couple équivalent disponible

$$M_{2eq^*} = \sqrt[3]{ \begin{aligned} \left| n_{2m,1^*} \middle| \cdot t_{1^*} \cdot \middle| M_{2,1^*} \right| + \ldots + \left| n_{2m,n^*} \middle| \cdot t_{n^*} \cdot \middle| M_{2,n^*} \right| \\ \left| n_{2m,1^*} \middle| \cdot t_{1^*} + \ldots + \middle| n_{2m,n^*} \middle| \cdot t_{n^*} \end{aligned}} \right|$$

Calcul du couple limite thermique

Pour une durée de mise en service ED > 50 %, calculez le couple limite thermique M_{2th} pour la vitesse d'entrée moyenne disponible n_{1m^*} . (Si $K_{mot,th} \le 0$, vous devez réduire en conséquence la vitesse d'entrée moyenne n_{1m^*} ou sélectionner un motoréducteur d'une autre taille.)

$$M_{2th} = M_{op} \cdot i \cdot K_{mot,th}$$


$$K_{mot,th} = 0.93 - \frac{a_{th}}{1000} \cdot fB_{T} \cdot \left(\frac{n_{tm^{*}}}{1000}\right)^{3}$$

Consultez les tableaux de sélection pour connaître les valeurs de i et ath.

Consultez le tableau correspondant dans le présent chapitre pour connaître les valeurs de fB_T.

Consultez la caractéristique moteur, chapitre [> 24.3], pour connaître la valeur du couple du moteur dans le point de fonctionnement M_{op} pour la vitesse d'entrée moyenne calculée n_{1m*}. Dans ce contexte, tenez compte de la taille et de la vitesse de rotation nominale n_N . Le graphique suivant montre un exemple pour le relevé du couple M₀ dans le point de fonctionnement.

Coefficients

Mode d'exploitation	fB _{op}
Fonctionnement continu régulier	1,00
Fonctionnement alterné	1,00
Fonctionnement alterné, charge réversible	1,00
Durée de service	fB _t
Par jour ≤ 8 h	1,00
Par jour ≤ 16 h	1,15
Par jour ≤ 24 h	1,20
Température	fB _⊤
Température ambiante ≤ 20 °C	1,0
Température ambiante ≤ 30 °C	1,1
Température ambiante ≤ 40 °C	1,25

EZHP

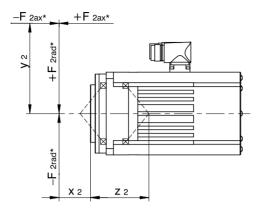
Remarques

Défense de dépasser la température réducteur maximale (voir chapitre Caractéristiques générales), dans le cas contraire, risque d'endommager le motoréducteur.

ID 442437_fr.03 - 03/2017 817

 En cas de freinages à pleine vitesse de rotation (par ex. en cas de panne de courant ou au moment de configurer la machine), respectez les couples réducteur admissibles (M_{2acc}, M_{2-NOT}) dans les tableaux de sélection.

24.7.2 Charges admissibles exercées sur l'arbre


Signes convenus	Unité	Explication				
C_{2k}	Nm/arc- min	Résistance au basculement				
ED	%	Durée de mise en service rapportée à 20 minutes				
F _{ax}	N	Force axiale admissible à la sortie				
F _{2ax*}	N	Force axiale disponible à la sortie du réducteur				
F _{2ax100}	N	Force axiale admissible à la sortie du réducteur pour n _{2m²} ≤ 100 min				
F _{2ax,eq*}	N	Force axiale équivalente disponible à la sortie du réducteur				
F _{2axN}	N	Force axiale nominale admissible à la sortie du réducteur				
F _{2rad*}	N	Force radiale disponible à la sortie du réducteur				
F _{2rad100}	N	Force radiale admissible à la sortie du réducteur pour $n_{2m^*} \le 100$ min ⁻¹				
F _{2radN}	N	Force radiale nominale admissible à la sortie du réducteur				
F _{2rad,acc*}	N	Force radiale d'accélération disponible à la sortie du réducteur				
F _{2rad,acc}	N	Force radiale d'accélération admissible à la sortie du réducteur				
F _{2rad,acc,n*}	N	Force radiale d'accélération disponible à la sortie du réducteur au cours de la énième période				
F _{2rad,eq*}	N	Force radiale équivalente disponible à la sortie du réducteur				
L _{10h}	h	Durée de vie des roulements				
M_{2k^*}	Nm	Couple de décrochage disponible à la sortie du réducteur				
M _{2k100}	Nm	Couple de décrochage admissible à la sortie du réducteur pour $n_{2m^*} \le 100 \text{ min}^{-1}$				
$M_{2k,acc}$	Nm	Couple de décrochage d'accélération admissible à la sortie du réducteur				
M _{2k,acc*}	Nm	Couple de décrochage d'accélération disponible à la sortie du réducteur				
M _{2k,acc,n*}	Nm	Couple de décrochage d'accélération disponible à la sortie du réducteur au cours de la énième période				
M_{2k,eq^*}	Nm	Couple de décrochage équivalent disponible à la sortie du réducteur				
M_{2kN}	Nm	Couple de décrochage nominal admissible à la sortie du réducteur				
n _{2m*}	min ⁻¹	Vitesse de sortie moyenne disponible				
n _{2m,n*}	min ⁻¹	Vitesse de sortie moyenne disponible au cours de la énième période				
t _{n*}	s	Durée de la énième période				
X_2	mm	Écart de l'épaule de l'arbre au point d'application de force				
y ₂	mm	Écart de l'axe de l'arbre au point d'application de la force axiale				
Z_2	mm	Écart de l'épaule de l'arbre au centre du roulement de sortie				

Les valeurs indiquées dans les tableaux pour les charges admissibles exercées sur l'arbre sont applicables pour :

- · Les dimensions d'arbre conformes au catalogue
- Les vitesses de sortie $n_{2m^*} \le 100 \text{ min}^{-1} (F_{2axN} = F_{2ax100}; F_{2radN} = F_{2rad100}; M_{2kN} = M_{2k100})$

Uniquement en cas d'utilisation des bords ajustés (carter, bride arbre creux)

Pour d'autres vitesses de sortie, vous pouvez télécharger les diagrammes sur http://products.stoeber.de.

Pour les vitesses de sortie n_{2m*} > 100 min⁻¹, les formules suivantes s'appliquent :

$$F_{2axN} = \frac{F_{2ax100}}{\sqrt[3]{\frac{n_{2m^*}}{100 \text{ min}^{-1}}}} \qquad \qquad F_{2radN} = \frac{F_{2rad100}}{\sqrt[3]{\frac{n_{2m^*}}{100 \text{ min}^{-1}}}} \qquad \qquad M_{2kN} = \frac{M_{2k100}}{\sqrt[3]{\frac{n_{2m^*}}{100 \text{ min}^{-1}}}}$$

Consultez le tableau suivant pour connaître les valeurs de F_{2ax100}, F_{2rad100} et M_{2k100}.

Туре	\mathbf{Z}_2	F_{2ax}	$F_{2\text{radN}}$	$\mathbf{F}_{2rad,acc}$	\mathbf{M}_{2kN}	$\mathbf{M}_{2\mathrm{k,acc}}$	C _{2k}
	[mm]	[N]	[N]	[N]	[Nm]	[Nm]	[Nm/arcmin]
EZHP_5	88,0	4150	5029	5429	440	475	340
EZHP_7	110,0	5000	9070	13605	1000	1500	700

Vous pouvez déterminer les forces transversales admissibles à partir du couple de décrochage admissible M_{2kN} et M_{2k,acc}. Les forces transversales disponibles ne doivent pas dépasser les forces transversales admissibles. Les forces transversales admissibles se rapportent au bout de l'arbre creux (x2 = 0).

$$M_{2k,acc^*} = \frac{2 \cdot F_{2ax^*} \cdot y_2 + F_{2rad,acc^*} \cdot \left(x_2 + z_2\right)}{1000} \le M_{2k,acc}$$

En cas d'applications avec plusieurs forces axiales et/ou radiales, vous devez additionner les forces vectoriellement.

En cas d'exploitation ARRÊT D'URGENCE CONTRÔLÉ (max. 1 000 charges alternées), vous pouvez multiplier les forces admissibles et les couples pour F_{2ax100} , $F_{2rad100}$ et M_{2k100} avec le coefficient 2.

Par ailleurs, tenez compte du calcul des valeurs équivalentes :

$$\begin{split} M_{2k,eq^*} &= \sqrt[3]{\frac{\left|n_{2m,1^*}\right| \cdot t_{1^*} \cdot \left|M_{2k,acc,1^*}\right| + \ldots + \left|n_{2m,n^*}\right| \cdot t_{n^*} \cdot \left|M_{2k,acc,n^*}\right|}{\left|n_{2m,1^*}\right| \cdot t_{1^*} + \ldots + \left|n_{2m,n^*}\right| \cdot t_{n^*}}} \leq M_{2kN} \\ F_{2rad,eq^*} &= \sqrt[3]{\frac{\left|n_{2m,1^*}\right| \cdot t_{1^*} \cdot \left|F_{2rad,acc,1^*}\right| + \ldots + \left|n_{2m,n^*}\right| \cdot t_{n^*} \cdot \left|F_{2rad,acc,n^*}\right|}{\left|n_{2m,1^*}\right| \cdot t_{1^*} + \ldots + \left|n_{2m,n^*}\right| \cdot t_{n^*}}} \leq F_{2radN} \end{split}$$

$$F_{\text{2rad,eq}^*} = \sqrt[3]{\frac{\left|n_{\text{2m,1}^*}\right| \cdot t_{\text{1}^*} \cdot \left|F_{\text{2rad,acc,1}^*}\right| + \ldots + \left|n_{\text{2m,n}^*}\right| \cdot t_{\text{n}^*} \cdot \left|F_{\text{2rad,acc,n}^*}\right|}{\left|n_{\text{2m,1}^*}\right| \cdot t_{\text{1}^*} + \ldots + \left|n_{\text{2m,n}^*}\right| \cdot t_{\text{n}^*}}} \leq F_{\text{2rad,n}}$$

$$F_{\text{2ax,eq}^{\star}} \leq F_{\text{2axN}}$$

EZHP

Pour la durée de vie des roulements L₁0h, les formules suivantes s'appliquent (ED ≤ 40

$$L_{10h} > 10\ 000\ h\ si\ 1 < M_{2kN}/M_{2k^*} < 1,25$$

$$L_{10h} > 20~000 \text{ h si } 1,25 < M_{2kN}/M_{2k^*} < 1,5$$

$$L_{10h} > 30\ 000\ h\ si\ 1,5 < M_{2kN}/M_{2k^*}$$

Pour une autre durée de mise en service, la formule suivante s'applique :

$$L_{10h} > L_{10h(ED=40\%)} \cdot \frac{40\%}{ED}$$

Autres informations 24.8

24.8.1 Directives et normes

Les moteurs brushless synchrones satisfont aux normes et directives suivantes :

- Directive basse tension 2014/35/EU
- Directive CEM 2014/30/EU
- EN 60204-1:2006-06
- EN 60034-1:2010-10
- EN 60034-5/A1:2007-01
- EN 60034-6:1993-11
- EN 60034-9/A1:2007-04
- EN 60034-14/A1:2007-06

24.8.2 Marquages

Les moteurs brushless synchrones portent les marquages suivants :

Marquage CE: le produit est conforme aux directives EU.

Marquage cURus « Recognized Component Class 155(F) » ; enregistré sous le numéro UL E182088 (N) auprès de Underwriters Laboratories USA

24.8.3 Autres documents

820

Entrez dans le champ Recherche... l'ID des documents.

Documentation	ID
Instructions de service moteurs brushless synchrones EZ	442585